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A B S T R A C T

Cryo-electron tomography (cryo-ET) is an imaging technique that allows us to three-
dimensionally visualize both the structural details of macro-molecular assemblies under
near-native conditions and its cellular context. Electrons strongly interact with biologi-
cal samples, limiting electron dose. The latter limits the signal-to-noise ratio and hence
resolution of an individual tomogram to about 50Å (5nm). Biological molecules can
be obtained by averaging volumes, each depicting copies of the molecule, allowing for
resolutions beyond 4Å (0.4nm). To this end, the ability to localize and classify com-
ponents is crucial, but challenging due to the low signal-to-noise ratio. Computational
innovation is key to mine biological information from cryo-electron tomography.

To promote such innovation, we provide a novel simulated dataset to benchmark dif-
ferent methods of localization and classification of biological macromolecules in cryo-
electron tomograms. Our publicly available dataset contains ten tomographic recon-
structions of simulated cell-like volumes. Each volume contains twelve different types
of complexes, varying in size, function and structure.

In this paper, we have evaluated seven different methods of finding and classifying
proteins. Six research groups present results obtained with learning-based methods and
trained on the simulated dataset, as well as a baseline template matching, a traditional
method widely used in cryo-ET research. We find that method performance corre-
lates with particle size, especially noticeable for template matching which performance
degrades rapidly as the size decreases. We learn that neural networks can achieve sig-
nificantly better localization and classification performance, in particular convolutional
networks with focus on high-resolution details such as those based on U-Net architec-
ture.

© 2020 Elsevier B.V. All rights reserved.
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1. Introduction1

There is a resolution gap in knowledge of cellular life be-2

tween the molecular level (obtained by techniques such as X-3

ray crystallography and cryo-electron microscopy single parti-4

cle analysis) and the cellular level (typically obtained by light5

microscopy techniques) [1]. Cryo-electron tomography (Cryo-6

ET) has the potential to bridge this gap by simultaneously three-7

dimensionally visualizing the cellular context and the structural8

details of macromolecular assemblies [2]. This technique may9

offer insights into key cellular process, improve our understand-10

ing of essential life processes and the modes of action of drugs.11

Cryo-ET is an application of transmission electron cryomi-12

croscopy, in which samples are imaged as they are sequentially13

tilted, typically every 1 to 3 degrees from about −60◦ to +60◦.14

The resulting “tilt-series” of 2D projections are then combined15

in a 3D reconstruction. In cryo-ET samples are vitrified in their16

fully hydrated state by rapid cooling and imaged under cryo-17

genic conditions. Rapid cooling allows imaging without dehy-18

dration or chemical fixation, which often disrupts and distorts19

biological samples [3].20

Electron microscope’s electrons strongly interact with bio-21

logical samples, limiting signal-to-noise and as a result the res-22

olution of individual tomograms to about 50Å (5nm), enough23

for the cellular context, but not for identifying structure of24

biomolecules in the sample. A common approach to increase25

resolution of the biomolecule of interest is to align and av-26

erage copies of the same particle, introducing the challenge27

of correctly localizing and identifying those particles in low-28

resolution tomograms (Figure 1).29

The core problem for this challenge is low signal-to-noise ra-30

tio of cryo-electron tomograms, often reaching extremely low31

values, closely followed by an incomplete reconstruction due32

to the limited tilt-series angles. Moreover, signal-to-noise in to-33

mograms is strongly frequency-dependent. Multiplied by the34

large amount of volumetric data obtained during each imag-35

ing session, manual segmentation is rarely feasible and often36

provide subjective results. Instead, automated approaches are37

typically employed.38

Particles of known structures can be found in the tomogram39

by template matching [4], a process of cross-correlating the40

template over tomogram to find peak locations and angles (i.e.41

location and angles where the template matches the most).42

For particles with unknown structures, reference-free meth-43

ods must be used. The most common approach is based on ap-44

plying Difference of Gaussian (DoG) [5]: a band-pass filter that45

removes noisy high frequency components and homogeneous46

low frequency areas, obtaining edges of structures. Based on47

the edges, a subtomogram containing the particle can be ex-48

tracted, aligned, averaged and refined with other copies of the49

particle present in the tomogram, allowing to obtain final, high-50

resolution structure of the particle.51

In recent years, machine learning has seen successful appli-52

cation to cryo-ET. Classical support vector machines have been53

used for both detection and classification [6]. With ever increas-54

Fig. 1. The overall process of cryo-electron tomography from data collec-
tion to reconstruction and subtomogram averaging.

ing amounts of data captured by cryo-EM and -ET methods 55

[7], deep learning methods are gaining popularity. Supervised 56

methods were proposed for localization [8], classification [9], 57

end-to-end segmentation [10] and joint localization and clas- 58

sification [11], providing faster and often more accurate results 59

than template matching [12]. Moreover, methods based on clus- 60

tering of representational features [13], segmentation by man- 61

ually designed rules [14] and geometric matching [15] provide 62

unsupervised and weakly-supervised alternatives, reducing the 63

dependency on annotated data. 64

Each of the mentioned methods is validated on different tasks 65

and different datasets, making it difficult to compare or draw 66

conclusive results about their relative performance. With this 67

paper, we aim to support researchers involved in developing 68

new methods for localization and detection of biomolecular 69

structures in cryo-electron tomograms. More specifically our 70

contributions are as follows: 71
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Fig. 2. 3D view of the macromolecular complexes that are present in the
dataset. Sorted by their molecular weight, left to right, top to bottom:
1s3x, 3qm1, 3gl1; 3h84, 2cg9, 3d2f; 1u6g, 3cf3, 1bxn; 1qvr, 4cr2, 4d8q.
Scalebar is 10nm.

• We release a new, publicly available, fully-annotated simu-1

lated dataset that resembles experimentally obtained cryo-2

electron tomograms.3

• We benchmark and conduct evaluation of six proposed4

learning-based methods against a strong, heavily-used5

baseline template matching.6

• We experimentally confirm correlation between classifica-7

tion performance and molecular weight of a particle, high-8

lighting the significant advantage of learning-based meth-9

ods for such targets over template matching.10

2. Benchmark11

We propose a task of localization and classification of par-12

ticles in the cryo-electron tomogram volume. A benchmark is13

conducted on a simulated cryo-electron tomogram populated14

with randomly positioned and oriented copies of structurally15

well-defined molecular complexes. In total, the volume con-16

tained 2782 particles of 12 different classes (Table 1). To fa-17

cilitate application of learning-based methods, we also provide18

nine tomograms with similar protein distribution and ground19

truth data that was used for the simulation.20

2.1. Dataset21

Our dataset generation starts with creating the original den-22

sity maps (grandmodels). First, to evaluate localization and23

classification for various size and shape proteins we chose 12 24

different proteins of known structure (Tables 1, Figure 2). To 25

characterize their shape, we calculated sphericity, Ψ, a measure 26

of how much the volume resembles a sphere: 27

Ψ =
π1/3 × (6V)2/3

A
(1) 28

and effective radius, the radius of a sphere with the same sur- 29

face area to volume ratio as the volume of interest: 30

re f f =
3V
A

(2) 31

where V is the volume and A is the surface area. 32

Next, we have generated their electron density maps at 3Å 33

resolution with UCSF Chimera [16] and then resampled to 10Å 34

resolution. Between 2400 and 2800 protein density volumes 35

were placed in the “grandmodel” (ground truth sample volume) 36

at random locations and in random S O(3) orientations. The pro- 37

teins were placed without overlapping each other but without 38

limitations of how close to each other they can be, for a more re- 39

alistic molecularly crowded environment (Figure 3a). For each 40

protein volume we saved the class, the center coordinates and 41

the Euler angles of its orientation (in ZXZ angle rotation no- 42

tation). Moreover, we have saved various other ground truth 43

artifacts: class masks (Figure 3b), occupancy maps (mapping 44

from each voxel to corresponding particle), and their bounding 45

boxes. 46

For ice simulation, we calculate the average charge density 47

of embedding amorphous ice from a molecular water model 3
48

and obtain 0.15V/nm3. We then embed macromolecular com- 49

plexes in an ice layer of 200nm and to encompass random varia- 50

tionin ice density, we add a random noise with σ = 0.01. Using 51

our GPU affine transformation volumetric framework 4, each 52

grandmodel was rotated over 40 evenly spaced tilt angles rang 53

ing from −60◦ to +60◦ with cubic b-spline interpolation [17]. 54

After rotation we added random structural noise, with stan- 55

dard deviation σ = 0.04, selected by comparison with experi- 56

mental images. The structural noise varied between rotations, 57

which modelled the sample deterioration due to the electron 58

beam damage. To calculate the projection image for each ro- 59

tation angle we implemented the multislice method [18]. This 60

method models the defocus gradient through the ice layer by 61

propagating the electron wave through slices of the model. We 62

set the size of these slices to 5nm. After calculating the wave 63

propagation through the sample we obtain the exit wave in the 64

image plane. To get the final projection image we multiplied 65

the exit wave by the microscope’s contrast transfer function 66

(CTF) using a defocus of 3 micrometer, an acceleration volt- 67

age of 300kV , amplitude contrast of 8%, and a Gaussian CTF 68

decay of 0.4Å−1. Finally we applied CTF dependent noise and 69

background noise with a signal-to-noise ratio of 0.004 to model 70

3NYU/ACF Scientific Visualization, Library of 3-D Molecular Structures:
http://www.nyu.edu/pages/mathmol/library/

4Voltools: CUDA-accelerated NumPy 3D affine transformations, https:
//github.com/the-lay/voltools

http://www.nyu.edu/pages/mathmol/library/
https://github.com/the-lay/voltools
https://github.com/the-lay/voltools
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PDB Name Mol. weight (kDa) Volume (nm3) Area (nm2) Sphericity Eff. radius (nmx)
1s3x Hsp70 ATPase 42.75 104.1 122 0.877 2.56
3qm1 LJ0536 S106A 62.62 139.1 144.9 0.896 2.88
3gl1 Ssb1, Hsp70 84.61 207 202.6 0.835 3.065
3h84 GET3 158.08 375.3 399 0.631 2.822
2cg9 Hsp90-Sba1 188.73 394.2 380.5 0.683 3.108
3d2f Sse1p, Hsp70 236.11 521.9 497.9 0.63 3.145
1u6g Cand1-Cul1-Roc1 238.82 498.5 488 0.623 3.065
3cf3 P97/vcp 541.74 1123 805.7 0.648 4.181
1bxn Rubisco 559.96 978.9 614.4 0.776 4.78
1qvr ClpB 593.36 1255 1159 0.485 3.248
4cr2 26S proteasome 1309.28 3085 1971 0.52 4.696
4d8q TRiC/CCT 1952.74 2152 1331 0.606 4.85

Table 1. Macromolecular complexes that are present in the dataset, sorted by their molecular weight.

Fig. 3. Central slice of tomogram #1 in the generated dataset: (a) ground
truth volume of the sample that was used for reconsutrction, (b) class mask,
where each voxel is annotated by class, (c) tomographic reconstruction

the noise added by the detector’s measurement. The final im-1

ages were 512x512 pixels with a pixel size of 1nm. We did2

a weighted back-projection reconstruction to obtain the tomo-3

grams of 512x512x512 with a sampling of 1nm/voxel.4

2.2. Evaluation5

The main goal of the benchmark is to localize and classify bi-6

ological particles in the tomographic reconstructions. The per-7

formance of the submissions has been evaluated solely on the8

test tomogram, the only tomogram for which ground truth is not9

available until after performing the test.10

During evaluation, we parsed the submitted result and com- 11

puted some commonly adopted performance metrics for clas- 12

sification and localization. The metrics are precision (Equa- 13

tion 3): percentage of results which are relevant; recall (Equa- 14

tion 4): percentage of total relevant results correctly classified; 15

F1 score (Equation 5): harmonic average of the precision and 16

recall; false negative rate also known as miss rate (Equation 6): 17

percentage of results which yield negative test outcomes. We 18

also record how far the predicted center was from the ground 19

truth center and how many results refer to the same particles. 20

Precision =
true positive

true positive + false positive
(3) 21

Recall =
true positive

true positive + false negative
(4) 22

F1 score = 2 ·
precision · recall
precision + recall

(5) 23

Miss rate = 1 − recall (6) 24

2.3. Comparison to an earlier benchmarks 25

Localization and classification in cryo-ET presents an open 26

problem with major challenges due to the nature of imaging 27

process and biological sample size (Section 1). Previous ver- 28

sion of our benchmark [12] has already attempted to establish 29

a comparison of the methods on a simulated, publicly available 30

dataset, and highlight the most interesting research directions. 31

Since then, the dataset generation method has been consider- 32

ably expanded. Multiple problems were addressed, most im- 33

portant of which is defective particle rotation that produced 34

chopped particles with unrealistic, hard edges. The problem is 35

particularly noticeable for smaller particles, where the cropping 36

makes the number of available voxels for classification even 37

smaller. Moreover, we have added following improvements: 38

• Instead of simple 2D projections, we now use multislice 39

wave propagation algorithm [18] to better simulate elec- 40

tron microscope behavior. 41

• We now allow crowded simulations, where particles can 42

be in direct contact with each other, instead of bounding 43

box space limited particles. 44
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Fig. 4. Central slices of test tomograms in SHREC 2019 (left) and SHREC
2020 (right). In the previous benchmark largest classes particles are visible
by eye without any processing.

• Noise model is now more precise and includes variations1

in ice thickness and detector measurements.2

• We are able to provide more dataset generation artifacts,3

including class masks (voxel to class mapping) and occu-4

pancy masks (voxel to particle mapping). This makes it5

easier for participants to benchmark their methods and re-6

duces the need to generate their own training data.7

Another change compared to the previous dataset is the dif-8

ference in the signal-to-noise ratio: 0.02 in 2019 vs. 0.004 in9

2020 (Figure 4). Lower signal-to-noise ratio leads to a more10

challenging, but more realistic dataset, and allows to highlight11

methods that would generalize to experimental data the most.12

3. Participants and methods13

Six international research groups joined in the experimental14

comparison, applying seven different methods, obtaining eight15

output results.16

3.1. Classification in cryo-electron tomograms with 3D MS-D17

network18

By: Yu Hao, Xiaohua Wan, Xuefeng Cui, Fa Zhang19

20

We designed a deep-learning based method to localize and21

classify the particles. We use 3D segmentation network to seg-22

ment the tomogram. Then, the location and classification of23

particles are calculated by clustering algorithm.24

First, the tomogram is cropped into cubic volumes with25

64x64x64 voxels. Then, our network conducts a voxel-wise26

classification on each cubic volume. Here, the voxels are clas-27

sified from 0 to 13.28

An example of a six layers 3D MS-D network with the dila-29

tion rate ∈ [1, 3] is shown in Figure 5. 3D dilated convolution is30

introduced as our basic operation to reduce the number of train-31

able parameters, and the dense connection is applied to reuse32

all preceding feature maps. Our network has 64 dilated lay-33

ers with dilation rate ∈ [1, 16]. It is implemented in PyTorch34

with CUDA acceleration and trained on 8 sets of tomograms.35

The model was trained for 200 epochs (spanning one week), in36

bathes of 125, using Adam [19] optimizer with learning rate37

of 0.0001 on five NVIDIA GeForce RTX 2080 Ti. The total 38

inference time for a tomogram is 5 minutes. 39

We use mean-shift clustering to determine the central posi- 40

tion of particles. In the segmented tomogram, each cluster can 41

be regarded as a particle. To improve the localization, the cen- 42

troids of 3D connected components are utilized as initial seeds 43

to generate more precise clusters. In each cluster, the label that 44

occurs most frequently is the classification result. 45

3.2. DeepFinder: Deep learning improves macromolecules lo- 46

calization and identification in 3D cellular cryo-electron 47

tomograms 48

By: Emmanuel Moebel 49

50

DeepFinder [20] is a computational tool for multiple macro- 51

molecular species localization, based on supervised deep learn- 52

ing. This two-step procedure (Figure 6) first produces a seg- 53

mentation map where a class label is assigned to each voxel. 54

The classes can represent different molecular species (e.g. ri- 55

bosomes, ATPase), states of a molecular species (e.g. binding 56

states, functional states) or cellular structures (e.g. membranes, 57

microtubules). In the second step, the segmentation map is used 58

to extract the positions of macromolecules. To perform image 59

segmentation, we use a 3D CNN whose architecture and train- 60

ing procedure have been adapted for large datasets with unbal- 61

anced classes. The analysis of the obtained segmentation maps 62

is achieved by clustering the voxels with the same label class, 63

using the mean-shift algorithm. Hence, the detected clusters 64

correspond to individual macromolecules and their positions 65

can then be derived. 66

The 3D CNN architecture is trained with Adam [19] opti- 67

mizer, using 0.0001 as learning rate, 0.9 as exponential decay 68

rate for the first moment estimate and 0.999 for the second mo- 69

ment estimate. A Dice loss [21] is used to estimate the network 70

parameters. The training took 50 hours on an Nvidia M40 GPU. 71

For large and medium macromolecules, presented scores are 72

reached after 22 hours; the additional time is necessary for hav- 73

ing better performance with small macromolecules. The seg- 74

mentation and clustering of a 512x512x200 tomogram takes 20 75

minutes. 76

With feasibility in mind, we developed training strategies 77

to assist the user in producing segmentation maps (needed for 78

training the CNN) from tomogram annotations consisting of the 79

spatial coordinates of macromolecules. DeepFinder is an open- 80

source python package 5, with a graphical interface aimed to- 81

wards non-computer scientist users. 82

3.3. Semantic segmentation using 3D ResNet with consensus 83

checking 84

By: Xiao Wang, Daisuke Kihara 85

86

The method is based on 3D semantic segmentation of the 87

tomogram data using deep learning. Given a voxel (cropped 88

3D region) from the tomogram, the proposed 3D-ResNet takes 89

5DeepFinder: htts://gitlab.inria.fr/serpico/deep-finder

htts://gitlab.inria.fr/serpico/deep-finder
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Fig. 5. 3D MS-D: Architecture of the network.
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Fig. 6. Top: CNN architecture used in DeepFinder. All convolutional layers are followed by a ReLU activation function, except the last layer which uses a
soft-max function. The up-sampling is achieved with up-convolutions (also called ”backward-convolution”). Combining feature maps from different scales
is performed by concatenation along channel dimension.
Bottom: workflow depicting how macromolecule coordinates are obtained from the segmentations generated by the CNN. A clustering algorithm (mean-
shift) is applied on the segmentation map to differentiate individual macromolecules.

the voxel as input and outputs the 13 probability scores for 121

proteins and background. The size of each 3D input slice was2

selected to be 32x32x32. To achieve better performance, we3

used ResNet of 20 layers [22, 23].4

In order to train the proposed deep learning model, we first5

sample negative examples from the provided training tomogram6

data by extracting voxels with the center that is not closer than7

16 grid units to any proteins. For each positive voxels (voxels8

that have a target protein at the center) and negative voxels, we9

randomly flipped and rotated before using it for training. We10

had in total 23, 350 positive voxels and 9, 000 negative voxels.11

In the training process, we used the Adam optimizer [19] with12

an initial learning rate of 0.002. The training took 5 hours on13

one NVIDIA GeForce GTX 1080Ti.14

In the prediction, we use a stride of 2 to select a center point15

for an input voxel. When a protein label is assigned to the cen-16

ter of a voxel, we check labels assigned to points within the box17

of the size of the protein to examine the consistency of the label18

assignments. The box size of each target protein was provided19

by the organizers. We removed the prediction for the center20

point if its predicted label was different from the majority of21

the assigned labels in the box. We did not apply this majority22

checking protocol for small proteins (i.e. 1s3x, 3qm1, 3gl1).23

For each voxel with a predicted label, we counted the num-24

ber of points with the same label in the protein box (majority25

count). Then, we clustered those points with the same label and 26

computed the mean of their coordinates as the position of the 27

protein. Finally, for each of the 12 target proteins, predicted 28

voxel positions of the target protein were sorted by the majority 29

count and the top N predictions was selected for submission, 30

where N was decided based on the class ratio of the 12 proteins 31

in the training set. The whole inference process takes 2 hours 32

on one tomograms. 33

3.4. YOPO: one-step object detection for cryo-ET macro- 34

molecule localization and classification 35

By: Xiangrui Zeng, Min Xu 36

37

We formulate a novel one-step object detection framework 38

specifically designed for cryo-ET data (Figure 7). Previ- 39

ous deep-learning-based works on detecting particles in cryo- 40

electron tomograms are either two-step classification (extract 41

potential structural regions as subtomograms and then perform 42

classification) or segmentation methods. 43

Considering two important properties of subtomogram data: 44

(1) the high-level structural details of a particle determine its 45

function and identity and (2) the particle is of random orien- 46

tation and displacement inside a subtomogram, we designed 47

a convolutional neural network named YOPO (You Only Pool 48

Once), which contains only one pooling layer (a global pooling 49
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Tomogram 5123

Subtomogram 243

Ground truth

particle extraction

YOPO

class prediction

YOPO Filtering c, x, y, z
c, x, y, z

.

.

. 

Training Stage

Prediction Stage

No segmentation map needed!

Testing Tomogram

C
PDB ID

Fig. 7. YOPO: Flowchart of macromolecule detection.

layer) to retain discriminative high-level structural details and1

achieve the maximal transformation-invariance. The flowchart2

of macromolecule localization and classification using YOPO is3

illustrated in Figure 7). In the training stage, only particle loca-4

tion ground truth was used to train the YOPO network to predict5

the PDB ID of a subtomogram. In the testing stage, the trained6

YOPO network was applied on the tomogram level to directly7

predict the location and PDB ID of detected macromolecules.8

From each training tomogram, we extract subtomograms of9

size 243 according to the ground truth particle location file. An10

additional 20000 subtomograms were extracted at random loca-11

tions from the background. Therefore, there are K = 13 classes12

in total including the background class. Subtomograms from13

tomogram 0 - 7 were used as training data and subtomograms14

from tomogram 8 as validation data. The training took 8 hours15

on one NVIDIA GeForce Titan X GPU. The trained model pre-16

dicted at every location by applying the learned model parame-17

ters on the whole testing tomogram. Locations with high con-18

fidence (probability > 0.99) to be one of the structural classes19

were kept. We then filtered the locations to ensure that the min-20

imum distance between two detections was greater than 14 vox-21

els.22

As a one-step object detection method, the classification and23

localization tasks are unified in an end-to-end fashion. YOPO24

is an efficient cryo-ET macromolecule detection (localization25

+ detection) framework: (1) the only ground truth information26

used for training is the particle locations and classes in ground27

truth particle location file; (2) YOPO performs prediction on28

a subtomogram level at every location, which is similar to the29

traditional template matching approach. However, the whole30

prediction on one tomogram took only about 40 minutes using31

one GPU instance.32

Fig. 8. Dn3DUnet: Cryo-electron volume particle detection and classifica-
tion pipeline.

3.5. Cryo-electron tomogram particle localization and classifi- 33

cation using 2D denoising network and 3D U-net pipeline 34

By: Nguyen P. Nguyen, Tommi White, Filiz Bunyak 35

36

In order to denoise the input tomograms and to improve the 37

detection performance, we used DnCNN [24], a feed-forward 38

denoising convolutional neural network utilizing residual learn- 39

ing strategies. The DnCNN network consists of 20 convolu- 40

tional layers. The network is designed to predict residual im- 41

age that is the difference between the noisy input image and 42

the latent clean image. The network is trained using 2D XY 43

slices from the tomogram volumes with Adam optimizer and 44

initial learning rate of 0.0025. Data slices were split by ratio 45

0.8 : 0.1 : 0.1 for training, validation and test sets. We denoised 46

the tomogram volumes slice by slice. The denoising step im- 47

proved the average peak signal to noise ratio (PSNR) of the 48

3D volumes from 6 to 22, and the average Structural Similarity 49

(SSIM) indices from 0.02 to 0.83 compared to the noisy input 50

volumes. The training of the denoising network took 2 hours 51

and 48 minutes. 52

The denoised tomogram volumes were fed to a modified 53

3D U-net [25] network, where we replaced the regular cross- 54

entropy loss function with the general dice loss function de- 55

scribed in [26, 21]. The network was retrained to perform 56

semantic segmentation of the 3D tomograms patches into 13 57

classes (one background class and 12 classes of particles). The 58

training was perfomed with Adam optimizer and initial learning 59

rate of 0.001. The training of the segmentation network took 12 60

hours and 22 minutes. The test volumes were partitioned into 61

non-overlapping 3D patches of size 1043 voxels and fed to the 62

3D U-net. 63

Connected component analysis was performed to identify in- 64

dividual particle centroids and volumes. A post-processing step 65

was used to filter-out spurious detections based on detection 66

size. Detected particles with centroids within 5 voxels from 67

the corresponding ground truth centroids were considered as 68

detected. Detections having the same class labels as the cor- 69

responding ground truth particles were considered as correct 70

classification. The result on average is obtained in 101 seconds 71

(25s for denoising, 38s for segmentation, 38s for localization). 72

3.6. Deeply cascaded U-net for multi-task cryo-electron to- 73

mography processing 74

By: Ilja Gubins, Remco C. Veltkamp, Friedrich Förster 75

76

We used U-net Multi-task Cascade (UMC), a novel CNN ar- 77

chitecture for multi-task learning (Figure 9). Inspired by U-net 78
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Fig. 9. UMC: Overview of U-net Multi-task Cascade architecture. Each de-
coder block accepts skip connections from encoder and previous decoders
at the same depth level.

architecture [25], we extend it by an additional skip connec-1

tion from each decoder block. Such outgoing connections allow2

us add multiple decoding pathways and connect them, forming3

deep cascades. Accordingly, UMC can be seen as a special case4

of a multi-task network cascade [27] where each cascade stage5

is a decoding pathway of U-Net. We hypothesize that connec-6

tivity between decoding pathways, facilitates inductive transfer7

between early and late stages of cascade. Moreover, the explicit8

parameter sharing acts as a form or regularization and reduces9

the risk of overfitting.10

For cryo-ET volumes, we decided to use UMC with two out-11

put paths, one for denoising and the second for segmentation.12

Our hypothesis is that explicitly supervised denoising of recon-13

struction can help segmentation to produce better output. We14

use UMC with depth of 5 and following number of filters at15

each level: 16, 32, 64, 128, 256, resulting in 8.82M of parame-16

ters. For denoising, we use mean squared error minimization17

objective between input reconstruction and provided ground18

truth grandmodel volume. For segmentation, we employ Tver-19

sky loss function [28] with α = 0.7 and β = 0.3, targetting20

original provided class mask.21

While developing, we used tomograms 0 to 7 for training and22

tomogram 8 for validation, but for the final model training we23

used all 9 available tomograms. We split each tomogram into24

patches of 643 voxels with 75% overlap and employ random25

horizontal flips for data augmentation. The model was trained26

for 25 epochs, in batches of 24, using Adam [19] optimizer with27

learning rate of 0.001. The training took 16 hours on a Tesla28

P100 GPU (Google Colab).29

Using trained model, we segmentated the test tomogram.30

Then, we found connected components and filtered out compo-31

nents that have less than 10 voxels or have centroids less than32

5 voxels away from another connected component. For a final33

predicted class of a particle, we took the most common occur- 34

ing class in the connected component. The total inference time 35

is 40 minutes. 36

3.7. Template matching 37

By: Gijs van der Schot, Ilja Gubins 38

39

We used the cryo-ET analysis framework PyTom [29] to con- 40

duct template matching using each of the twelve protein elec- 41

tron density maps as templates. The templates were modulated 42

in the frequency domain using a standard ctf curve at 3um defo- 43

cus. Frequencies beyond the first ctf-zero were set to 0. Spheri- 44

cal template masks with Gaussian smoothed edges based on the 45

thresholded electron density were used for normalization for the 46

cross-correlation value. We selected the top 2, 000 candidates 47

with the highest cross-correlation score for each class and then 48

used the candidate lists with the two following approaches: 49

1. Thresholded, where we take top N candidates per class 50

going from the biggest class to the smallest one by one. 51

2. Filtered, where we take top N candidates per class as in the 52

previous method, but we additionally filter out candidates 53

that would overlap with already selected particles. To test 54

for overlap, we calculate the distance between center of an 55

existing particle to the center of the candidate and calculate 56

whether the distance is smaller than the sum of their radii. 57

The exact number of particles in the test tomogram is un- 58

known at the test time, only that it is a random number between 59

2400 and 2800 particles. Based on average of 2600 particles 60

and 12 protein classes, we have selected N = 217. Template 61

matching for 12 protein classes takes 27 hours 24 minutes on 62

16-core CPU (2 hours 17 minutes per class) or 1 hour 24 min- 63

utes on one NVIDIA GeForce GTX 1080 Ti (6 minutes 12 sec- 64

onds per class). 65

4. Results 66

We have evaluated different metrics (Section 2.2) that allows 67

comparison of localization (Table 3) and classification (Table 4) 68

performance of the methods. For more convenient referencing, 69

we have assigned following short names to the methods: 70

1. 3D MS-D (Section 3.1) 71

2. DeepFinder (Section 3.2) 72

3. 3D ResNet (Section 3.3) 73

4. YOPO (Section 3.4) 74

5. Dn3DUnet (Section 3.5) 75

6. UMC (Section 3.6) 76

7. TM-T and TM-F (Section 3.7) 77

The test tomogram has 2782 particles of the same 12 classes 78

and same distribution as the training data (Table 2). To have a 79

more detailed classification evaluation, we compare results with 80

cumulative F1 score (Figure 10), as well as group proteins by 81

their molecular weight (Table 5) and average F1 scores for an 82

additional metric correlated with particle sizes (Table 6). 83
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PDB Quantity
1s3x 233
3qm1 241
3gl1 229
3h84 240
2cg9 228
3d2f 214
1u6g 217
3cf3 238
1bxn 245
1qvr 226
4cr2 231
4d8q 240

Table 2. Distribution of proteins in the test tomogram.

Fig. 10. Cumulative classification F1 scores of methods.

5. Discussion1

Overall, the benchmark allows us to compare baseline and2

upcoming methods, as well as highlight current challenges in3

the novel cryo-ET localization and classification approaches.4

Comparison with template matching. All but the template5

matching are learning-based methods using 3D convolutional6

neural networks. The results (Table 3, 4) show that learning-7

based methods can achieve higher performance than the tra-8

ditional baseline template matching, heavily used in cryo-ET9

research this day. Compared to template matching, learning-10

based methods have the advantage of being significantly more11

robust to noise perturbations than cross-correlation. Another12

significant advantage is computational time (Table 7). The ta-13

ble highlights the range of possible training and inference tim-14

ings of the methods. All learning-based methods require signifi-15

cantly less time than the traditional CPU-based template match-16

ing, often even including the training stage. Advanced GPU17

template matching shows significant speedup compared to CPU18

time, still takes longer than almost all learning-based methods.19

Method performance correlates with size. Results (Table 6,20

Figure 12) show that there is a correlation between macro-21

molecular complex size and classification performance for all22

methods. For a better overview, we have plot method classifi-23

cation performance vs. molecular weight (Figure 11). The per-24

formance of all methods is consistent, with similar performance 25

dips and spikes (i.e. 1bxn at 560kDa and 2cg9 at 188kDa). The 26

results suggest that template matching provides comparable re- 27

sults for finding large and medium particles, but rapidly falls 28

behind as the size decreases. This shows potential of learning- 29

based methods for smaller particles. 30

Neural network architectures. Smaller particles were found es- 31

pecially well by UMC (Section 3.6, and is closely follower by 32

DeepFinder (Section 3.2). Both methods are variations of U- 33

Net network [25] architecture and use similar overlap-based 34

loss functions, however UMC has noticeably higher number of 35

parameters (more filters and higher depth) and also uses ad- 36

ditional supervision for denoising. One of the main features 37

of U-Net architecture are skip connections that give the net- 38

work higher control over feature map combination, preservation 39

of information despite of downsampling between network lev- 40

els and subsequently leads to a higher resolution, and it was 41

first used for biomedical semantic segmentation, where high 42

accuracy is critical. Dn3DUnet (Section 3.5) also uses U-Net 43

for segmentation, however there is a pre-segmentation denois- 44

ing done with a separate DnCNN [24] network. Using not 45

connected networks might induce loss of information between 46

pipeline stages and that might explain lower performance com- 47

pared to other U-Net inspired methods. 48

Other methods also draw inspiration from neural network 49

architectures designed for image processing. 3D MS-D (Sec- 50

tion 3.1) using a densely connected convolutional network [30] 51

and 3D ResNet (Section 3.3) using a residual network [22] con- 52

ducted semantic segmentation of the tomograms. Alternatively, 53

YOPO (Section 3.4) does not rely on semantic segmentation 54

and still achieves top-3 performance. 55

Supervised training. All of the learning-based methods fea- 56

tured in the paper are supervised, requiring a training dataset 57

with data distribution closely related to the data the method 58

will be used on. For cryo-ET, this is a highly limiting factor 59

that can prevent the wide adoption of deep learning, especially 60

with semantic segmentation models that require voxel-level an- 61

notations. DeepFinder provides users with a GUI to generate 62

such annotations. However, various approaches try to use la- 63

bels are less difficult to obtain. For example, YOPO requires 64

only coordinates and the class of a particle location, making it 65

significantly more accessible for cryo-ET researchers. 66

Results compared to an earlier benchmark. One of the com- 67

pared methods, DeepFinder, was also benchmarked on an ear- 68

lier version of the benchmark. Previously, it has obtained lo- 69

calization F1 score of 0.791 and average classification F1 score 70

of 0.565. Compared with this year performance (0.924 on lo- 71

calization and 0.871 on classification), the significant improve- 72

ment can suggest that the new dataset is less challenging and 73

therefore less realistic. 74

We have decided to conduct a baseline template matching us- 75

ing the same approach as described in Section 3.7. The results 76

(Table 8, 9) show that localization in 2019 is less challenging 77

while classification is noticeably harder. This is consistent with 78
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Submission RR TP FP FN MH RO AD Recall Precision Miss rate F1 Score
3D MS-D 2663 2523 139 259 0 2.05 0.906 0.947 0.094 0.926
DeepFinder 2594 2485 107 297 2 0 2.166 0.893 0.957 0.107 0.924
3D ResNet 2864 1983 611 799 246 0 3.501 0.712 0.692 0.288 0.702
YOPO 2821 2543 240 239 37 0 2.104 0.914 0.901 0.086 0.907
Dn3DUnet 2598 2340 146 442 112 0 2.807 0.841 0.9 0.159 0.869
UMC 2781 2642 68 140 68 0 1.873 0.949 0.95 0.051 0.949
TM-T 2604 1898 20 884 412 0 1.528 0.682 0.728 0.318 0.704
TM-F 2604 2267 331 515 6 0 1.767 0.814 0.87 0.185 0.841

Table 3. Results of localization evaluation. RR: results reported; TP: true positive, unique particles found; FP: false positive, reported non-existant
particles; FN: false negative, unique particles not found; MH: multiple hits: unique particles that had more than one result; RO: results outside of volume;
AD: average euclidean distance from predicted particle center; Recall: uniquely selected true locations divided by actual number of particles in the test
tomogram; Precision: uniquely selected true locations divided by RR; Miss rate: percentage of results which yield negative results; F1 Score: harmonic
average of the precision and recall. The best results in each column are highlighted.

Submission 1s3x 3qm1 3gl1 3h84 2cg9 3d2f 1u6g 3cf3 1bxn 1qvr 4cr2 4d8q
3D MS-D 0.192 0.408 0.437 0.416 0.368 0.461 0.492 0.719 0.948 0.851 0.942 0.964
DeepFinder 0.61 0.729 0.8 0.911 0.783 0.848 0.866 0.939 1 0.984 0.993 0.993
3D ResNet 0.193 0.185 0.405 0.407 0.334 0.445 0.491 0.628 0.906 0.719 0.868 0.817
YOPO 0.558 0.741 0.67 0.834 0.696 0.682 0.795 0.896 0.987 0.83 0.923 0.993
Dn3DUnet 0.529 0.577 0.569 0.674 0.332 0.523 0.462 0.676 0.925 0.684 0.907 0.974
UMC 0.661 0.827 0.839 0.947 0.855 0.873 0.899 0.981 0.997 0.98 1 0.997
TM-T 0.2 0.102 0.248 0.727 0.555 0.869 0.835 0.88 0.934 0.97 0.968 0.945
TM-F 0.319 0.219 0.207 0.66 0.589 0.808 0.815 0.945 0.939 0.966 0.968 0.945

Table 4. Results of classification evaluation for all classes. The values correspond to F1 score achieved by methods on specific classes. The best results in
each column are highlighted.

Fig. 11. Method classification performance plot against particle molecular weight. X-axis in the right plot is in logarithmic scale.

Group Weight Proteins
Small <200 1s3x, 3qm1, 3gl1, 3h84, 2cg9
Medium 200 - 600 3d2f, 1u6g, 3cf3, 1bxn, 1qvr
Large 600 4cr2, 4d8q

Table 5. Grouping of macromolecular complexes by their molecular weight
in kDa

both higher signal-to-noise ratio (making it easier to find par- 1

ticles, Figure 4) and the previously mentioned in Section 2.3 2

rotation bug (making it harder to classify found particles). Dif- 3

ferent signal-to-noise ratios make it hard to compare relative 4

difficulty of the datasets. However there is no doubt that the 5

current version of the benchmark is more realistic due to fixed 6

bugs and improved simulation. 7

Future work. Our dataset and benchmark provides cryo-ET re- 8

searchers with a baseline and highlights potential research di- 9

rections. However, additional work can be done to make the 10

comparison between algorithms stronger. First and most im- 11
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Fig. 12. Classification confusion matrices of the compared methods. The particles are ordered by molecular weight. The colorbar indicates the number of
correct classifications.

Submission Small Medium Large
3D MS-D 0.364 0.694 0.953
DeepFinder 0.767 0.927 0.993
3D ResNet 0.305 0.638 0.843
YOPO 0.7 0.838 0.958
Dn3DUnet 0.536 0.654 0.941
UMC 0.826 0.946 0.999
TM-T 0.366 0.898 0.957
TM-F 0.399 0.895 0.957

Table 6. F1 scores of each submission for size group defined in Table 5. The
best results in each column are highlighted.

Method Training stage Inference stage
3D MS-D 168h 5m
DeepFinder 50h 20m
3D ResNet 5h 2h
YOPO 8h 40m
Dn3DUnet 15h 10m 1m 41s
UMC 16h 42m
TM-T/TM-F GPU N/A 27h 24m
TM-T/TM-F CPU N/A 1h 24m

Table 7. Reported training and inference stages timings. Template match-
ing results (last two rows) are reported for both CPU and GPU processing,
for all 12 classes.

portantly, the simulator has not been quantitatively validated 1

with experimental data, leading to the question of how well the 2

simulation captures realistic data. Next, the results show that 3

learning-based methods achieve better performance than tradi- 4

tional template matching. At the same time, validation of the 5

template matching itself is not trivial, but can be done with our 6

simulated dataset. Such inspection can provide an insight on 7

strengths and weaknesses of the most widely used method in 8

cryo-ET. Finally, the benchmark should reflect the performance 9

on the experimental data, so the simulation process can be fur- 10

ther improved to improve transfer to the experimental domain, 11

for example with defocus gradient and motion blur. 12
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